Climate change, freshwater and agriculture

Prof. Dr. Pavel Kabat

<u>Pavel.Kabat@wur.nl</u>

Wageningen University and Research Center The Netherlands

Earth System Science & Climate Change Group <u>www.ess.wur.nl</u> Climate Centre (CCB) Wageningen UR <u>www.wur.nl/ccb</u> National Climate Change Programme Netherlands <u>www.klimaatvoorruimte.nl</u> Intergovernmental Panel on Climate Change (IPCC AR 4)

Worldwide Water Use by Region

Worldwide Water Use by Sector

The current situation

University of Southampton

Glacier melt in the Himalayas

Glaciers and frozen ground are receding

Increased Glacier retreat since the early 1990s

Area of seasonally frozen ground in NH has decreased by 7% from 1901 to 2002

Most Important Focus of World Leaders

2004

The white space in this chart represents "DK/NA."

The warmer, the more negative the impacts!

Global mean annual temperature change relative to 1980-1999 (°C) IPCC, 2007, WGII SPM 5°C 2 3 4 Increased water availability in moist tropics and high latitudes** Decreasing water availability and increasing drought in mid-latitudes and semi-arid low latitudes** - - -WATER Hundreds of millions of people exposed to increase water stress** Significant¹ extinctions Up to 30% of species at increasing risk of extinction** around the globe** Increased coral bleaching** — Most corals bleached** — Widespread coral mortality** — — — — ECOSYSTEMS Terrestrial biosphere tends toward a net carbon source as: ~15%** — ~ ~ 40% of ecosystems affected** -Increasing species range shifts and wildfire risk** Ecosystem changes due to weakening of the meridional - overturning circulation** Complex, localised negative impacts on small holders, subsistence farmers and fishers** -Tendencies for cereal productivity _____ Productivity of all cereals __ __ to decrease in low latitudes** FOOD decreases in low latitudes** Tendencies for some cereal productivity _____ Cereal productivity to to increase at mid- to high latitudes** decrease in some regions** Increased damage from floods and storms** About 30% of global coastal COASTS wetlands lost^{2**} Millions more people could experience. coastal flooding each year** Increasing burden from malnutrition, diarhoeal, cardio-respiratory, and infectious diseases** Increased morbidity and mortality from heat waves, floods, and droughts** HEALTH Changed distribution of some disease vectors** Substantial burden on health services** - -

IPCC 4AR WGIL

Impacts on rain-fed agriculture

a) Suitability index Current Rain-fed Crop Production Potential of the Earth

b) Water run-off change

Current Ensemble mean percentage change of annual runoff between present and 2100

Easterling et al., 2007. Figure 5.1: Suitability of rain fed crops (IPCC, 2007. WGII)

Ecosystems Services

Future Impacts: on a Supporting Service

Impacts on Biodiversity

20%-30% of higher plants and animals at high risk of extinction

if Δ T 1.5°C - 2.5°C over present

(medium confidence)

High productivity if diversity high

Tilman et al., 2001. Science, 294: 843 -845

Summary Impacts on Biodiversity

¹ Significant is defined here as more than 40%.

From Figure SPM.2

(IPCC, 2007. Summary for Policy Makers by Working Group II AR4 IPCC)

Future Impacts: On Provisioning Services

Agricultural Productivity Globally, the potential for food production is

- Globally, the potential for food production is projected to increase with increases in local average temperature over a range of 1-3°C, but above this it is projected to decrease.
- Crop productivity is projected to increase slightly at mid- to high latitudes for local mean temperature increases of up to 1-3°C depending on the crop, and then decrease beyond that in some regions.
- At lower latitudes, especially seasonally dry and tropical regions, crop productivity is projected to decrease for even small local temperature increases (1-2°C), which would increase the risk of hunger.

IPCC, 2007. SPM WGII, p.11

(medium confidence)

Harvests?

Agricultural Yields and CO₂fertilisation

Impacts on rain-fed agriculture

a) Suitability index Current Rain-fed Crop Production Potential of the Earth

50% reduction in yield by 2020's

b) Water run-off change

Current Ensemble mean percentage change of annual runoff between present and 2100

Easterling et al., 2007. Figure 5.1: Suitability of rain fed crops (IPCC, 2007. WGII)

Easterling et al., 2007. Figure 5.2: Yields and warming (IPCC, 2007. WGII)

Simulated Corn Yields

today

2055

(Jones & Thornton, 2001)

Wheat

Easterling et al., 2007. Figure 5.2: Yields and warming (IPCC, 2007. WGII)

Easterling et al., 2007. Figure 5.2: Yields and warming (IPCC, 2007. WGII)

Diseases

In warmer and wetter weather several are likely to spread

E.g. tan spot (yellow spot) caused by fungus *Pyrenophora triticirepentis*

Impacts on cereal prices by global temperature increase

Easterling et al., 2007. Figure 5.3: Ecereal prices vs. ∆T (IPCC, 2007. WGII)

Hunger - Malnutrition - Povertv

	20	020	2050		2080		And the Real Property lies
	Million	s at risk	Millions at risk		Millions at risk		-LANDA STAT
Reference	AEZ- BLS	DSSAT- BLS	AEZ- BLS	DSSAT- BLS	AEZ- BLS	DSSAT- BLS	Color H
A1	663	663	208	208	108	108	
A2	782	782	721	721	768	769	B
B1	749	749	239	240	91	90	
B2	630	630	348	348	233	233	
CC	AEZ- BLS	DSSAT- BLS	AEZ- BLS	DSSAT- BLS	AEZ- BLS	DSSAT- BLS	
A1	666	687	219	210	136	136	P
A2	777	805	730	722	885	742	
B1	739	771	242	242	99	102	
B2	640	660	336	358	244	221	1
CC, no CO ₂	AEZ- BLS	DSSAT- BLS	AEZ- BLS	DSSAT- BLS	AEZ- BLS	DSSAT- BLS	
A1	NA	726	NA	308	NA	370	-
A2	794	845	788	933	950	1320	
B1	NA	792	NA	275	NA	125	
B2	652	685	356	415	257	384	(<u>///</u>

Easterling et al., 2007. Figure 5.6: Climate change, development path, and hunger risks in developing countries (IPCC, 2007. WGII)

Collaboration project:

- Plant Science Group:
 - Jan Verhagen (project leader)
 - Pieter Vereijken
 - Frank Ewert
 - Harm Smit
- Social Science Group:
 - Geert Woltjer
 - René Verburg
- Environmental Science Group:
 - Tia Hermans
 - Mark Metzger
 - Han Naeff

Content of the project

Scenario	Variant	Crop/prod	Time slices	
A1	EU-27	Wheat	05-20-50- <i>80</i>	
		Potato	05-20-50- <i>80</i>	
		Milk	05-20-50- <i>80</i>	
	EU-Ural	Wheat	05-20-50- <i>80</i>	
		Potato	05-20-50- <i>80</i>	
		Milk	05-20-50- <i>80</i>	
B2				

Method

- Step 1: Estimate the achievable supply (tons) of wheat, potato and milk in 2020 and 2050
 - Step 2: Estimate the demand (tons) for wheat, potato and milk in 2020 and 2050
 - Step 3: Adjust the achievable supply to the demand for wheat, potato and milk in 2020 and 2050

Step 1: A1 wheat achievable supply

Conclusion 1: scenario A1 wheat

- In 2050, as a result of climate changes and technology improvements (related to market) wheat production/ha increases compared to 2005 in all regions (mainly due to technology)
- There are large regional differences in productivity increase (3 to >150%)
- Highest wheat production/ha in 2050 in IE, followed by UK, BE, NL, FR, DK, GE

Step 2: estimate demand

- Elaboration of GTAP (Global Trade Analysis Project) (van Meijl et al, 2006)
- Based on worldwide data on trade and input-output
- Population and economic growth (GDP/capita) are driving variables to estimate growth (%) of commodities

Step 2: A1 wheat demand

Achievable supply	2005	2020	2050
(million ton)			
EU-27	113,4	160,5 🔇	221,5
EU-Urals	176,8	235,3	345,5
Demand	2005	2020	2050
(million tons)			
EU-27	113,4	121,1 (138,4
EU-Urals	176,8	192,8	261,2

Conclusion 2: scenario A1 wheat

- EU-27 demand of wheat in 2050 increases compared to 2005
- Total achievable supply (tons) of EU-27 in 2050 exceeds the demand (tons)
- In scenario B2 the demand exceeds the achievable supply in 2050 for all crops